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Abstract

Laminar forced convection heat transfer in a non-Newtonian fluid flow inside a pipe has
been investigated analytically. Fully developed laminar velocity distributions obtained by a
power-law fluid rheology model is used, and viscous dissipation was taken into account. The
theoretical analysis of the heat transfer is performed under a constant wall temp. case. An
important feature of this approach isthat it permits an arbitrary distribution of the surrounding
medium temperature and an arbitrary velocity distribution of the fluid. These techniques were
verified by a comparison with the existing results. The effects of the Brinkman number and
rheological properties on the distribution of the local Nusselt number have been studied. It is
shown that the Nusselt number strongly depends on the value of power law index. The
Nusselt number sharply decreases in the range of 0 < n < 0.1. However, for n > 0.5, the
Nusselt number decreases monotonically with the increasing n, and for n > 1, the values of

Nusselt number approach a constant value.

Keywords: Heat transfer, forced convection, Non-Newtonian fluid, analytical solution,

viscous dissipation, Graetz’s problem, laminar flow.
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1. Introduction

An understanding of convection heat transfer in non-Newtonian fluids inside pipes is
crucial to the design of several types of thermal equipments. From this viewpoint, heat
transfer problems of this type have been investigated by a number of researchers[1,2,3]. The
problem pertaining to the derivation of the local Nusselt number in the thermal region when
an incompressible fluid flows through a pipe with a fully developed velocity distribution is of
particular interest; this problem is referred to as the Graetz problem. It has attracted the
interest of not only engineers but also applied mathematicians because of the difficulties
involved in deriving its solution. The original Graetz problem, which was first analytically
solved by Graetz [4], is refer to the classical Graetz —Nusselt problem in single phase flow
that neglects the effects of axial heat conduction, viscous dissipation, and thermal energy
sources within the fluid. It is regarded as one of the most important solutions in the heat
transfer science and it governs forced convection heat transfer for fluid with known velocity
profile and involves finding of the heat transfer rate in a fully developed flow of fluid flowing
inside conduit of various cross-sectional geometries with constant heat flux or constant wall
temperature mode of heating. This type of solution allows temperature profile to be calculated
from the coupled equations of motion andenergy [5].

A comprehensive analytically studies for the fully developed power-law fluid flowing in
a circular tube for both uniform wall heat flux and wall temperature has been done [6] , but
the authors neglected the effects of viscous dissipation. They show that the value of Nusselt
number for a power-law fluid within uniform heat flux is given by:
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_8(Bn+1H(dn+1)
Nu =
31n% +12n+1

(1)

Where nis the power-law index. For Newtonian fluid, i.e. for n =1, Eqgn. (1) yields the well

known result as;

428

Nu = = const. 2
1 (2

Where this result in Egn. (2) was confirmed early by many number of authors[7,8].

However, the Graetz problem has been extended over problems that focus on turbulent
flows, non-Newtonian flows, forced convection in a porous medium, and the effects of
viscous dissipation for Newtonian fluid and that include effects of heat conduction [9-17]. In
all the works cited above there is no studied related to the effects of viscous dissipation on
heat transfer with non-Newtonian fluid.

Therefore, the objective of this study is to mathematically solve the forced convection
heat transfer problem in a pipe subjected to constant wall temp. for fully developed region,
which is a type of Graetz problem, and derive completely analytical solutions for the fluid

temperature profile and local Nusselt number. Since the present study focuses on heat transfer
with a sufficiently large Peclet number (Pe), the axial heat conduction is considered
negligible. However, viscous dissipation is taken into account. Numerical calculations are
performed to demonstrate the effects of the Brinkman number (Br) and rheological properties

on the distribution of the local Nusselt number

2. Mathematical M odel and For mulation

Figure (1)shows the physical model and coordinate system.A non-Newtonian fluid with
fully developed velocity profile u(r) flows into a cylindrical pipe of radius R .The pipe is

convectively heated or cooled by the surrounding medium of constant wall temp. q,, -
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Figure (1). Notations and axes of the problem.

According to the type of fluid flowing inside the pipe, a power-law fluid, which can

approximate the non-Newtonian viscosity of many types of fluids with good accuracy over a
wide range of shear rates, is considered here. The shear stress (t rZ)a(:ting on the viscous fluid

is given by the formula [18]:

trz:_ﬂ%
dr

Where m and N are the power-lav model parameter index, respectively. Depending on

1
" du

o (3)

power law index (n) ; there are three cases as:

1. n<lindicatesthat the fluid is a pseudo-plastic fluid,
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2. n=lindicatesthat the fluid is equivalent to a Newtonian fluid, and
3. n>1lindicatesthat the fluid is adilatant fluid.
The fully developed velocity distribution is derived in terms of mean velocity (u_ ) as follows

[18]:

In order to illustrate the solution technique , a number of simplifying assumptions are
made for the simplified of the basic equation as.
1. theflow mode islaminar, steady and axial symmetry.
2. thefluid physical properties are independent of temperature and pressure,
3. theaxial heat conduction is negligible relative to radial heat conduction,
4. natural convection effects are neglected

(4)

where (u,,) is the mean velocity.

By coupling Egn. (3) with Eqgn. (4), the shear stress for non-Newtonian power-law can be
expressed by:

a1 todn+1cgs 500
: -+ U 5

:mA——-({‘ : |
@RQE n ¢eRg H

rz

In this case, the steady-state heat balance taking viscous dissipation into account is expressed
as follows[18]:

kilg? ﬂg: rc u(r){;aéﬂg- t @9 (6)
e reg ellzg
Where p, ¢ and k are the density, specific heat and thermal conductivity, respectively. In
addition, the second term on the right-hand side is the viscous dissipationterm effects.

In order to avoid difficulties of definitions the heat transfer and to simplify the
mathematical treatments, three modified boundary conditions are proposed and employed for
special process requirements as:
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-At pipe center; by applying constant centerline temperature gives:

-By symmetry, there can be no heat flux across the centerline in the pipe; this case means that
the radial temperature gradient is zero, therefore:

B.C1 r=0at center line r=R at wall (7
B.C2 ar=0 11TTT:O )
r

-At pipe wall; the identified temperature gives the third boundary condition:
B.C3 ar=R T=T, 9

Now, substituting the velocity profile, Egn. (4), into energy balance Eqn. (6) yields;

é Lﬂ_u N+l n+1
1Ma1T0 asn + ogaero oma§n+loaeloaeron
g7 0 tn - o= LEG—' 2+ — m (10)
(& Ty aén+ +16E &Ry GUe‘HZQJkgnzeRzeRz
Where a isthermal diffusivity and defined by:
a:L (11)

re,

Generally, one tries to select dimensionless quantities so as to minimize the number of
parameter in the final problem formulation and that is useful in scale-up problems by
introducing the following dimensionless variables:

r z U

Xx=—:h= i

R" ~ 2RPe|
_a,-Tno) 12

q Tw - Tc 6 b

Substitution of Egn. (12) into Eqg. (10) yields a dimensionless partial differential equation as:

N+l n+l

T@M0_lan+1td  TUIqo pa8n+ly *C
— X —xI=— X" (o= " (13)
ﬂxgxﬂxg 48n+1% Eﬁﬂhg 8 n g

Where the Brinkman number (Br) is defined by:
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n+l

mu
Br=-——r 14
TR, T 4

and the Peclet number (Pe) isgiven by :

Pe="—m (15)

Based on these new parameters and Eqns. (7), (8) and (9), the dimensionless boundary
conditions becomes as:

B.C:1at x=0 ; g=1 (16)

B.C.2 a x=0 ; d—q:O (17)
dx

B.C.:3 a x=1; g=0 (18)

Generally for the case of constant wall temp., radial temperature profiles are well stabilized,;
so thatq(x,h) is afunction of dimensional cylindrical coordinate (x) alone, the constancy of

the flux implies that:

Ta _

i (19

where A, isaconstant; substituting Eqn. (19) into Eqn. (13) yields an ordinary differential

equation, as:
1dadgo A0 "0 B 88N +10 g
- — = X" n 20
xdxgxdg 4 ¢ n+1g 0 Qng (20)
Let introduce new other simplified parameters as:
..+l
N=20*H10 g 21)
E€n o
_Aan+lo
0=, € (22)
en+1g
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and

b=—0" (23)

9: Co(l-xb)- Nx ° (24)
@

This separable differential equation can be directly integrated twice with respect to
dimensionless radial coordinate(x) ; the results give temperature profile in circular pipe as
follows:

0 N

=C, xPP2+ — _x"24C Inx +C 25
T e S e L )

in which C,and C,are constants of integration. These two constants can be evaluated from
the first two boundary conditions Eqgn. (16) and Eqgn. (17) and by utilizing of Eqgn. (25), as:.
C,=0ad(C,=1 (26)
These two expressions of integration constants can be inserted into Eqgn. (25) and rearranged
to give the dimensionless temperature profile as follows:
: C, x P*2 9 LX b+2
g (b+2° & (b+2)

Based on the third boundary condition, Eqgn. (18), with Eqgn. (27), one can find parameter

+1 (27)

N- (b +2)*)u

C :4
P oeld- (b+2)

u
a (28)
a
When substitution for C,into Eqn. (27), the local radial temperature distribution becomes as:
0
) =N Colva 8 Gey @9)

(b +2)° & ed g

In another form:

F> <) o}
o - 3n+1 2
T, - T(r N-Cy)aron a9 0
(r) g( 9_24__ JEoE Y, (30)
T,-T adn+1p eRg e 4 #Rg

133



Thi-Qar University Journal for Engineering Sciences, Vol. 2, No. 1 2011

This equation represents the temperature profile for power-law fluid in cylindrical pipe with
viscous effects under the effect of constant wall temp..

In fully-developed flow, it is usual to utilize the bulk temperature (mean fluid temperature), T,
, rather than the center-line temperature when defining the Nusselt number [8,18]. This mean

or bulk temperature is given by:

2pr cng;‘jl'(r)u(r)rdrdq

2pR

2prc, OO(r)rdrdq

T, = (31

In dimensionless form of bulk temperature(q, ), Eqn. (31) becomes:

1

051 (F (x)xax
Q=27 (32)
O x (x)dx

Where f isthe dimensionless velocity profile and defined as:
== (33)

By substitution velocity and temperature profiles Egns. (4) and Egn. ( 29) into Egn. (32)

becomes:
1} A
"jE€dAN-C,)0 .., &L, 0, U
o 10 A T
0 U
Qp = b (39
dl- x° )<dx
0
Taking the generality of the analysis into account, this equation, Eqn. (34), can be
readily integrated to obtain the dimensionless forms of bulk temperature as follows:
_é 2(N-C u a€,b+2)06
ot AN-C) U agb+2s -

€b+2b+32b+a) Eab+4) 5
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According to the axes that shown in Figure 1, the local heat transfer coefficient inside the pipe
is normally defined by:

T
q, =h(T, - T,) =k (3)
dri s
According to the definition the local Nusselt number (Nu) isgiven by:
r
Nu=—= =% 37
T 0

Based on dimensionless parameters, the local Nusselt number (Nu) is can be expressed by:

da

dx| _,
— (38)

Where q,, is the dimensionless wall temperatures, which could be evaluated byq, =q| _,

therefore when substitution in Egn. (29), the results could be as:

_4N-C)u, a60,

= 39
Ay Q| 4 em a4 (39)
. . Rig| O _
In addition, from Eqn. (29), the temperature gradient at wall ¢— Zisgivenas
x=1 @
dg| _ (2N +bC,) (40)

dx 2(b +2)

x=1

By substitution the Egns. (35), (39) and (40) into Eqgn. (38) and simplified the results, the final
results of Nusselt number (Nu)can be evaluated and expressed as:

e 2 u
3In°“ +12n+1 +origy géan +10 ; (41)
@8(3n+1)(5n+1) & n g g
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This equation represents the Nusselt number for power-law fluid in cylindrical pipe with
viscous effects under the effect of constant wall temp. for fully developed laminar flow.

3. Results and discussion

In the absence of dissipation effect (Br=0) the solution is independent of whether there
iswall heating or cooling. However, viscous dissipation always contributes to internal heating
of the fluid; hence the solution will differ according to the process taking place. The
Brinkman number (Br) is chosen as a criterion which shows the relative importance of
viscous dissipation. For brevity and standing in a reasonable range, -1 < Br < 1. Where
positive values of Br correspond to wall heating (Tw>T.and Br>0) case that mean heat is
being supplied across the walls into the fluid, while the opposite is true for negative values of
Br, that mean wall cooling cases (Tw<Tand Br<0).

As stated earlier that the thermal boundary conditions have been considered for the
pipe wall as constant wall temp.. For this boundary condition both wall heating or wall
cooling cases are examined and treated separately.

Figures (2a, b and c) show the temperature profiles made dimensionless using this scale
for wall heating, no viscous dissipation and wall cooling cases, respectively, where these
profiles based on Egn. (29). These plots make clear the aforementioned effects of increased
dissipation. As expected, increasing dissipation increases the bulk temperature of the fluid due
to internal heating of the fluid. For the wall heating case, this increase in the fluid temperature
decreases the temperature difference between the wall and the fluid, as will be shown later,
which is followed with a decrease in heat transfer. When wall cooling is applied, due to the
internal heating effect of the viscous dissipation on the fluid temperature profile, temperature

difference is increased with the increasing Brinkman number(Br). In fact, wall cooling is

applied to reduce the bulk temperature of the fluid, while the effect of the viscous dissipation
is increasing the bulk temperature of the fluid. Therefore, the amount of viscous dissipation
may change the overall heat balance. When the Brinkman number exceeds a certain limiting
value, the heat generated internally by viscous dissipation process will overcome the effect of
wall cooling.
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Figure (2). Effects of power law index on dimensionless fluid temperature profilesfor:
(a) heating wall (Br=-1.0), (b) no viscous dissipation (Br=0.0), and (c) cooling wall
(Br=1.0).
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Figure (3) represents the variation of Nusselt number with the rheological properties
(power-law index) for constant wall temp. case with different values of Brinkman number.
Where the asymptotic and downstream Nusselt number profiles are shown clearly for wall
heating (Br > 0). When wall cooling (Br < 0) is applied to reduce the bulk temperature of the
fluid, as explained earlier, the amount of viscous dissipation may change the overall heat
balance. With increasing value of Br in the negative direction, the Nusselt number reaches an
asymptotic value. As noticed, when Br goesto infinity for either the wall heating or the wall
cooling case, the Nusselt number reaches the same asymptotic value. This is due to the fact
that the heat generated internally by viscous dissipation processes will balance the effect of
wall cooling. Generally, Nusselt number with viscous effects for both wall heating and wall

cooling is less than Nusselt number for non viscous dissipation.
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Figure (3). Effects of power-law index on Nusselt number for different values of

Brinkman number.

While Figure (4) represents the variation of Nusselt number with the Brinkman number
for constant wall temp. case with different values of power law index (n). Actually, thisisan
expected result, when Egn. (41) is closely examined. For the wall heating case, with the
increasing value of Br, Nu decreases to reach constant values. This is because the temperature
difference which drives the heat transfer decreases. At Br=0.5, the heat supplied by the wall
into the fluid is balanced with the internal heat generation due to the viscous heating. For Br >
0.5, the internally generated heat by the viscous dissipation overcomes the wall heat. When
Br=1.0, Nu reaches an asymptotic value. Generally, Nusselt number Newtonian fluid is higher

than those for pseudo- plastic and dilatants fluids.
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Figure (4). Effects of Brinkman number on Nusselt number for different values of

power-law index.

4. Conclusions

The forced convection heat transfer problem with viscous dissipation inside a pipe
subjected to constant wall temp. has been solved mathematically, which is a type of the
Graetz problem. Completely analytical solutions for the fluid temperature and localNusselt
number (Nu) have been derived. The effects of the Brinkman number (Br) and rheological
properties (power-law index) on the distribution of the local Nusselt number have been shown
through numerical calculations. The local Nusselt number in the thermal region tends to
increase with a decrease in the power-law model index (n). It has been shown that viscous
dissipation in the fluid can significantly influence laminar flow heat transfer.

With regard to the Graetz problem, the present analytical method can be applied to heat
transfer not only in a pipe but aso in a concentric annulus and a channel between parallel
plates; it can also be applied to heat transfer in a channel with a moving wall because there is
no restriction on the velocity distribution form of afluid.
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6. Nomenclature

List of symbols
Br Brinkman number = mum ™ R™Y [K (Tw — TJ)]
Co specific heat (Jkg* K™)
h local heat transfer coefficient (W/m?® .K)
n power-law model parameter (Pa.s')
Nu local Nusselt number = 2hR/k
r radial coordinate (m).
R pipe radius (m)
T fluid temperature (K)
u axial fluid velocity (m/s)
Um mean axial fluid velocity (m/s)
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Pe Peclet number = 2un,R/a

Ow constant heat flux (W/m?)

z axial coordinate (m).

Greek symbols

n dimensionless axial coordinate =z/(umR*.a )
k thermal conductivity (W/m K)

0 dimensionless fluid temperature = (Tw — T)/(Tw — T¢)
f dimensionless velocity = u/un,

a thermal diffusivity (m?/s)

p fluid density (kgm )

Tix shear stress (Pa/m?)

& dimensionless radial coordinate = r/R
Subscripts

b bulk

c centerline

w wall
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